Decomposing Global Constraints into SAT

Christian Bessiere, George Katsirelos, Nina Naroditskaya, Claude-Guy Quimper, Toby Walsh
Decomposing Global Constraints into SAT

(alias: why we need constraint programming!)

Christian Bessiere, George Katsirelos, Nina Naroditskaya, Claude-Guy Quimper, Toby Walsh
Motivation

➲ Mature and effective technologies in constraint programming
 ● Global constraints
 ● Search methods
 ● Branching heuristics
 ● ...

➲ Many successful applications
 ● Scheduling, configuration, …
Global constraints

- Capture common patterns
 - E.g. permutation = AllDifferent
- Associated propagator
 - Efficient inference methods
Motivation

- Many global constraints can be effectively decomposed
 - REGULAR constraint in a call centre rostering problem [Quimper & Walsh CP06]
 - REGULAR, SEQUENCE, TABLE constraints [Bacchus CP06]
 - GRAMMAR constraint [Quimper & Walsh CP07]
 - ALL DIFFERENT constraint [Bessiere et al IJCAI 09]
Why not just decompose all global constraints?

- MIP decomposes everything into linear inequalities after all
- Many free advantages
 - nogood learning, incremental propagators, impact based heuristics, …

What can you do in SAT and what can you only do in CP?
Decomposing GLOBALs

• Successful examples
 – REGULAR
 – SEQUENCE
 – CFG
 – ALL DIFFERENT
 – NVALUES
 – GCC
 – …
Decomposing GLOBALs

• Successful examples
 – REGULAR
 – SEQUENCE
 – CFG
 – ALL DIFFERENT
 – NVALUES
 – GCC
 – ...

Main results

- Some surprisingly complex propagation algorithms for global constraints can be efficiently decomposed.

- However, there exist other propagation algorithms which have an exponential size decomposition.
REGULAR constraint

- Sequence of vars defines a regular language
- Useful in rostering and many other problems

Shift = Days | Nights | Days Shift | Nights Shift

- Days = d | d Days
- Nights = n | n n | n n n
REGULAR constraint

- Sequence of vars defines a regular language
- Complex propagator based on dynamic programming
- Enforces domain consistency in $O(ndQ)$
REGULAR constraint

- Simple decomposition
 - Does not hinder propagation
 - Again in $O(ndQ)$ time and space

- Introduce sequence of vars for state of automaton after jth step
 - Then simply post transition constraints
 - $Q_{i+1} = t(Q_i, X_i)$
REGULAR constraint

- Rostering example
 Shift = Days | Nights | Days Shift | Nights Shift
 - Days = 0 | 0 Days
 - Nights = 1 | 1 1 | 1 1 1

- Transition constraints
 - Qi+1 = Xi * (Qi + Xi)
 - Qi in [0,3]
AllDifferent constraint

- One of the oldest global constraints
 - Appeared in ALICE [Laurier 78]
- One of the most useful global constraints
 - Timetabling
 - Scheduling
 - Routing
 - …
AllDifferent constraint

AllDifferent(X₁,..,Xₙ) iff
Xᵢ ≠ Xⱼ for i<j

E.g AllDifferent(1,2,4) but not AllDifferent(1,2,1)
AllDifferent constraint

Decompose into $O(n^2)$ inequalities
- This hinders propagation
- $X_1, X_2, X_3 \in \{1,2\}$
- $X_1 \neq X_2$, $X_1 \neq X_3$, $X_2 \neq X_3$ are domain consistent
- However, AllDifferent(X_1,X_2,X_3) has no solution

Can we decompose whilst maintaining a global view?
AllDifferent constraint

- Range/bound consistency propagator can be encoded into SAT
 - Based on Hall intervals

- Domain consistency propagator requires exponential size SAT encoding
 - Based on circuit complexity
AllDifferent constraint

- **Bound consistency**
 - Max and min in each domain have bound support
 - Bound support = satisfying assignment in which each var is bet max and min

- **Range consistency**
 - Every value in each domain has bound support

- **Domain consistency**
 - Every value in each domain has support
 - Support = satisfying assignment in which each var is assigned value from its domain
AllDifferent constraint

- Bound and range consistency
 - Central concept is **Hall interval**
 - Hall interval = interval of m values which contains domains of m variables
 - Other variables must find their bound supports outside of this!
AllDifferent constraint

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>X5</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AllDifferent constraint

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1,1] is a Hall interval
AllDifferent constraint

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>X5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1,1] is a Hall interval, X5 consumes interval
AllDifferent constraint

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>X4</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1,1] is a Hall interval, $X2 \neq 1$
AllDifferent constraint

<table>
<thead>
<tr>
<th>X1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>X5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1,1] is a Hall interval, X2 ≠ 1
AllDifferent constraint

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>X5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[3,4] is a Hall interval, contains X1 and X3
AllDifferent constraint

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>X5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[3,4] is a Hall interval, $X_2 \cap [3,4] = 0$, $X_4 \cap [3,4] = 0$
AllDifferent constraint

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>X5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[3,4] is a Hall interval, X2 ∩ [3,4] = 0, X4 ∩ [3,4] = 0
AllDifferent constraint

- Simple decomposition
 - $A_{ilu}=1$ iff $X_i \in [l,u]$
 - $\sum A_{ilu} \leq u-l+1$
AllDifferent constraint

- Simple decomposition
 1. $A_{ilu} = 1$ iff $X_i \in [l,u]$
 2. $\sum A_{ilu} \leq u-l+1$

Can be given directly to MIP solver
Easily encoded into SAT
AllDifferent constraint

- Simple decomposition
 - $A_{ilu} = 1$ iff $X_i \in [l,u]$
 - $\sum A_{ilu} \leq u-l+1$

- Does not hinder propagation
 - Domain consistency on decomposition achieves range consistency on AllDifferent
AllDifferent constraint

- Simple decomposition
 - $A_{ilu} = 1$ iff $X_i \in [l, u]$
 - $\sum A_{ilu} \leq u-l+1$
- Does not hinder propagation
 - Domain consistency on decomposition achieves range consistency on AllDifferent
 - Time complexity $O(nd^3)$ down branch
AllDifferent constraint

- Simple decomposition
 - $A_{ilu} = 1$ iff $X_i \in [l,u]$
 - $\sum A_{ilu} \leq u-l+1$

- Does not hinder propagation
 - Bound consistency on decomposition achieves bound consistency on AllDifferent
AllDifferent constraint

- Simple decomposition
 - $A_{ilu} = 1$ iff $X_i \in [l,u]$
 - $\sum A_{ilu} \leq u-l+1$

- Does not hinder propagation
 - Bound consistency on decomposition achieves bound consistency on AllDifferent
 - Time complexity $O(nd^2)$ down branch
AllDifferent constraint

- Simple decomposition
 - $A_{ilu} = 1$ iff $X_i \in [l,u]$
 - $\sum A_{ilu} \leq u-l+1$

- Does not hinder propagation
 - Unit propagation on SAT encoding achieves range consistency on AllDifferent
Other decompositions

- Similar interval based decompositions for many other global constraints:
 - NValues
 - GCC
 - Common
 - Used
 - ...

That shows what we can do in SAT ...

Now for what we cannot do in SAT
Main result

Polynomial size CNF decomposition of constraint propagator

iff

Polynomial size monotone circuit
Proof outline

Constraint propagator
⇔
Constraint checker

CNF Decomposition
⇔
Monotone circuit

All reductions polynomial
Constraint propagator

- Function \(f: P(D) \to P(D) \)
 - Monotone
 - i.e. smaller input, smaller output
 - Contracting
 - i.e. output \(\subseteq \) input
 - Idempotent
 - i.e. \(f(f(\text{input})) = f(\text{input}) \)
 - Correct
 - Only prunes values that have no support
 - When domain wipes out, there is no support
Constraint checker

- Function $f: P(D) \mapsto \{0, 1\}$
 - Monotone
 - I.e. smaller input, smaller output
 - Correct
 - I.e. if $f(\text{input}) = 0$ then there is no support
Polynomial time constraint propagator

iff

Polynomial time constraint checker
CNF decomposition of constraint checker

- Input vars of CNF encode characteristic function of $D(X)$
 - Can also have auxiliary vars

- One output var
 - Set to false by unit propagation iff constraint checker returns 0
Monotone circuits

- DAG of ANDs and ORs
- Computes exactly the monotone Boolean functions
 - Note: our result has nothing to say about $P=NP$. There are, for instance, poly time monotone Boolean functions which require superpoly size monotone circuit
Main result

Polynomial size CNF decomposition of constraint propagator/checker
iff
Polynomial size monotone circuit
We can now use lower bounds on monotone circuits

- E.g. Domain consistency propagator for AllDifferent computes perfect matching in bipartite value graph
- Smallest monotone circuit to compute such a matching is super-polynomial
Circuit complexity

- We can now use lower bounds on monotone circuits

 - Thus, we conclude that the smallest CNF encoding of a domain consistency propagator for AllDifferent is super-polynomial in size
We can now use lower bounds on monotone circuits.

Thus, we conclude that the smallest CNF encoding of a domain consistency propagator for AllDifferent is super-polynomial in size.

Unfortunately there aren’t too many monotone circuit complexity results to exploit.
Possible (but unlikely) escapes

- Don’t represent domains explicitly but just bounds
 - Exponentially more compact

- Use monotone arithmetic circuits
Conclusions

➲ What we can do in SAT
 • Some global constraints
 • E.g. Domain consistency on REGULAR, and range/bound consistency on AllDifferent

➲ What we cannot do in SAT
 • All global constraints
 • E.g. Domain consistency on AllDifferent