
GCC for Embedded VLIW Processors: Why Not?

Benoı̂t Dupont de Dinechin
Research & Development Responsible

STS Compilation Expertise Center
STMicroelectronics Grenoble (France)

benoit.dupont-de-dinechin@st.com

GCC for Embedded VLIW Presentation Outline

Presentation Outline

� VLIW Code Generation Requirements

� Programmer-Supplied Information

� Machine-Level SSA Form

� Predicated Code Support

� Near-Optimal Software Pipelining

� Summary and Conclusions

GREPS 2007 – September 16th 2

GCC for Embedded VLIW VLIW Code Generation Requirements

VLIW Code Generation Requirements
Processors and Compilation Technologies at STMicroelectronics

Processor Type Compilers
ARM 926 (v5) Embedded RISC GCC
ST40 / SH4 Embedded RISC GCC
MMDSP V80 16/24bit DSP ACE CoSy + EliXir
ST100 Family VLIW DSP GHS + LAO v1, PGI
ST200 Family VLIW Media GCCFE + Open64 + LAO v2
STxP70 Family Hardware Controller GCCFE + Open64
ARM v6–v7 RISC Media GCCFE + Open64 + LAO v2

EliXir STMicroelectronics proprietary code generator [LCTES’04]

LAO was “Linear Assembly Optimizer” for ST100 [CASES 2000], is
now an open source superblock scheduler / software pipeliner

GREPS 2007 – September 16th 3

GCC for Embedded VLIW VLIW Code Generation Requirements

The ST120 VLIW-DSP Processor Core

� 4-issue clustered VLIW (2 address operations, 2 data operations)

� fully predicated, 1-target ”Normal PDI” (IMPACT terminology)

GREPS 2007 – September 16th 4

GCC for Embedded VLIW VLIW Code Generation Requirements

The ST200 VLIW Media Family (ST210, ST220, ST231, ST240)

� 4-issue VLIW from the Lx architecture Faraboschi et al. [ISCA’00]

� partially predicated with SELECT operations (Fisher style VLIW)

GREPS 2007 – September 16th 5

GCC for Embedded VLIW VLIW Code Generation Requirements

The STxP70 Hardware Controller

� ISA loosely based on the ST100 (DSP arithmetic, hardware loops)

� controller for SIMD (512 bit) application-defined co-processors

� co-processor registers seen as 256 bit pairs or 64 bit quadruples

� fully predicated, 2-target ”Unconditional PDI”:

CMPLT Gy, Rn, Rp

�
� �

� � � ��� 	�
 � �

� ��� � � ��� 	�
 � �

Gx& CMPLT Gy, Rn, Rp

�
� �

� � � � ��� ��� 	�
 � �

� � �� � � ��� � ��� 	
 � �

� the core predication model applies to co-processor operations

GREPS 2007 – September 16th 6

GCC for Embedded VLIW VLIW Code Generation Requirements

Classic Code Generation [Aho 1986]

� instruction selection and calling conventions lowering

� control-flow (dominators, loop nesting) analyzes

� data-flow (liveness, reaching definitions) analyzes

� register allocation and stack frame building

� peephole and branch optimizations

Modern Code Generation [Muchnick 1997]

� loop unrolling and basic block replication

� extended block optimizations with instruction re-selection

� instruction scheduling and software pipelining

� basic block alignment and procedure placement

GREPS 2007 – September 16th 7

GCC for Embedded VLIW VLIW Code Generation Requirements

Code Generation for Embedded VLIW Processors

� matching code idioms such as DSP arithmetic by target
processor instructions

� if-conversion based on conditional MOVEs, SELECTs, or fully
predicated instructions

� taking advantage of specialized addressing modes and of
hardware looping capabilities

� rewriting loops in order to exploit SIMD instructions

� management of register tuples and of register aliasing

� complex software pipelining in case of clustered architectures

� tricks to reduce code size or enhance code compressibility,
including instruction mode switching

GREPS 2007 – September 16th 8

GCC for Embedded VLIW VLIW Code Generation Requirements

VLIW Code Generation Experience at STMicroelectronics

� programmer-supplied information is critical for high
performances and reduced code sizes

� SSA form is beneficial in a code generator: range propagation,
hardware looping, auto-modified addressing

� predicated code support must be considered early in code
generator design

� with register tuples and register aliasing, register allocation is
still challenging

� solving integer linear programming formulations of software
pipelining is practical

The ST200 production compiler significantly outperforms the HP Lx
compiler, a descendant of the Multiflow Trace Scheduling compiler.

GREPS 2007 – September 16th 9

GCC for Embedded VLIW Programmer-Supplied Information

Programmer-Supplied Information
Intrinsic Functions

� better optimized than ASM statements
#if __c64x
define DIG_REV(i, m, j) ((j) = (_shfl(_rotl(_bitr(_deal(i)), 16)) >> (m)))
#else
define DIG_REV(i, m, j) \

do { \
unsigned _ = (i); \
_ = ((_ & 0x33333333) << 2) | ((_ & ˜0x33333333) >> 2); \
_ = ((_ & 0x0F0F0F0F) << 4) | ((_ & ˜0x0F0F0F0F) >> 4); \
_ = ((_ & 0x00FF00FF) << 8) | ((_ & ˜0x00FF00FF) >> 8); \
_ = ((_ & 0x0000FFFF) << 16) | ((_ & ˜0x0000FFFF) >> 16); \
(j) = _ >> (m); \

} while (0)
#endif

� target-specific intrinsics functions

� application-level intrinsics functions

GREPS 2007 – September 16th 10

GCC for Embedded VLIW Programmer-Supplied Information

restrict Pointers

� introduced by Cray Research to bring FORTRAN non-aliasing of
function parameters to C [Homer “Restricted Pointers in C”]
void f10(int n, float *restrict a, float *b, float *c) {

int i;

for (i=0; i<n; i++)

a[i] = b[i] + c[i];

}

� non-aliasing of memory references asserted by restrict is
only valid in the pointer lexical scope

� most compilers forget lexical scopes in the code generator
– GCC and Open64 miss this dependency between *p and *q

{ int *restrict p = r; *p++; }

{ int *restrict q = s; *q = 0; }

GREPS 2007 – September 16th 11

GCC for Embedded VLIW Programmer-Supplied Information

restrict Compiler Implementations

Cray Research PVP only consider restrict on parameters of
non-inlined functions (correct)

Multiflow only consider restrict on functions parameters, in
case of inlining ’incarnation numbers’ must match (correct)

Open64 restrict pointer dereferences do not alias except with
pointers derived from self (incorrect)

GCC restrict pointer dereferences do not alias with any other
restrict pointer dereferences (incorrect)

� S. Freudenberger proposes to combine the ’incarnation number’
of inlining with the DFS number of scope nesting: will be
implemented in STMicroelectronics Open64-based compilers

� M. Mock “Why Programmer-specified Aliasing is a Bad Idea”

GREPS 2007 – September 16th 12

GCC for Embedded VLIW Programmer-Supplied Information

#pragma ivdep in High-Performance Compilers
#pragma ivdep

for (i = 0; i < N; i++) {

a[i] = a[i+k] + 1;

}

Cray Research PVP “the compiler ignores vector dependencies,
including explicit dependencies, in any attempt to vectorize the
loop”

MIPSPRO & Open64 “IVDEP informs the compiler that no loop
carried dependencies should be assumed”

Intel ICC “none of the conservatively assumed data dependences
that prohibit vectorization of the loop actually occur”

Multiflow interprets IVDEP as “no memory dependences” after
register variable promotion

GREPS 2007 – September 16th 13

GCC for Embedded VLIW Programmer-Supplied Information

#pragma ivdep Interpretations

vector ignore lexically upward dependences (Cray PVP, intel ICC)

parallel ignore loop-carried dependences (MIPSPRO, Open64)

liberal ignore loop-variant dependences (Multiflow)

#pragma ivdep in STMicroelectronics Compilers

� a command-line option selects among these three interpretations

� #pragma loopdep VECTOR or PARALLEL or LIBERAL

� only dependences that involve at least one loop-variant memory
reference are considered for removal

� a loop variant is: a scalar induction: a dereference of a loop
variant; a function with a loop variant argument

needed: C equivalent of the FORALL construct of Fortran 95 / HPF

GREPS 2007 – September 16th 14

GCC for Embedded VLIW Programmer-Supplied Information

Programmer Assumptions Example

� TI DSP Library 32-bit fixed-point FFT for C64x processors:
#ifndef NOASSUME

_nassert((int)(w)%8 == 0);

_nassert((int)(x)%8 == 0);

_nassert(h2 %8 == 0);

_nassert(l1 %8 == 0);

_nassert(l2 %8 == 0);

_nassert(npoints >= 16);

#pragma MUST_ITERATE(4, , 1)

#endif

for (i = 0; i < npoints; i += 4)

{

/*--*/

/* Read the first three twiddle factor values. This loop co- */

/* mputes one radix 4 butterfly at a time. */

/*--*/

co10 = w[j+1]; si10 = w[j+0];

co20 = w[j+3]; si20 = w[j+2];

co30 = w[j+5]; si30 = w[j+4];

GREPS 2007 – September 16th 15

GCC for Embedded VLIW Programmer-Supplied Information

Programmer Assumptions Motivations

� loop iterates at least � , at most � , loop counter is �� �� �� �� 	

– reduce loop unrolling overhead, enable modulo expansion /
kernel unrolling in case of counted hardware loops

� data pointer is aligned or mis-aligned w.r.t. wider data type
– enable memory access packing, reduce SIMDization overhead

Programmer Assumptions Exploitation

� a simple built-in function builtin assume(boolean
expression) is enough to feed the compiler

� propagate facts collected from conditionals, data declarations,
and builtin assume(), by data-flow analysis
– build on Wegman & Zadeck “Constant Propagation with

Conditional Branches” [TOPLAS 13(2) 1991] algorithm

GREPS 2007 – September 16th 16

GCC for Embedded VLIW Machine-Level SSA Form

Machine-Level SSA Form
SSA Construction Issues: Non-Kill Definitions

� all SSA variable definitions are kills, while conditional
definitions and partial register writes are not

� work-around: enforce ordering of non-kill definitions

SSA Destruction Issues: Operand Constraints

� some SSA variables must be renamed into dedicated registers, or
same/different virtual registers: architectural limitations,
procedure-calling conventions

� work-around: insert COPY operations to isolate the constrained
operands, then rely on the register allocator biased coloring

detrimental effects especially with pre-pass instruction scheduling

GREPS 2007 – September 16th 17

GCC for Embedded VLIW Machine-Level SSA Form

Review of the SSA the Destruction Techniques

� Cytron et al. “Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph” [TOPLAS 13(4) 1991]
– insert COPY for the arguments of � -functions in the

predecessors, then rely on the register allocator coalescing

� Briggs et al. “Practical Improvements to the Construction and
Destruction of Static Single Assignment Form” [SPE 28(8) 1998]
– identifies ’Lost Copy’ and ’Swap’ problems
– fix incorrect behavior of Cytron et al. [TOPLAS 13(4) 1991]

when critical edges are not split

GREPS 2007 – September 16th 18

GCC for Embedded VLIW Machine-Level SSA Form
� Budimlić et al. “Fast Copy Coalescing and Live-Range

Identification” [PLDI’02]
– lightweight SSA destruction motivated by JIT compilation
– use the SSA form dominance of definitions over uses to avoid

explicit interference graph
– construct SSA-webs with early pruning of interfering

variables, then partition into non-interfering classes
– introduce the “dominance forest” data-structure to avoid

quadratic number of interference tests
– critical edge splitting is required

GREPS 2007 – September 16th 19

GCC for Embedded VLIW Machine-Level SSA Form
� Sreedhar et al. “Translating Out of Static Single Assignment

Form” [SAS’99] (US patent 6182284):
– Method 1 inserts COPY for the arguments of � -functions in

the predecessors and for the � -functions targets in the current
block, then applies a new SSA-based coalescing algorithm

– Method 3 maintains liveness and interference graph to insert
COPY that will not be removed by the new SSA-based
coalescing algorithm

– the new SSA-based coalescing algorithm is more effective
than register allocation coalescing

GREPS 2007 – September 16th 20

GCC for Embedded VLIW Machine-Level SSA Form
� Leung & George “Static Single Assignment Form for Machine

Code” [PLDI’99]
– handles the operand constraints of machine-level SSA form
– builds on the algorithm by Briggs et al. [SPE 28(8) 1998]

� Rastello et al. “Optimizing Translation Out of SSA using
Renaming Constraints” [CGO’04] (STMicroelectronics)
– fix bugs and generalize Leung & George [PLDI’99]
– generalize Sreedhar et al. [SAS’99] (and avoid patent)

STMicroelectronics Compilers SSA Destruction

STMicroelectronics compilers use Sreedhar et al. [SAS’99] extensions

� work on extensions for operand constraints and predicated code

GREPS 2007 – September 16th 21

GCC for Embedded VLIW Machine-Level SSA Form

Sreedhar et al. [SAS 1999] Liveness and Congruence Example
� � � � � �

� � � � � �

� �

� � � � � � � � �

��������

� � � � � �

� � � � � �

� � � � � �

� �

� 	

� 	 �
 � � � � � �

� 	 �
 � � � � � �

live-out � � �
 � � � � � � � � live-out � � �
 � � � � � � � �

live-in � � 	
 � � � 	 � � 	 �

� variables � � � � � � � � � � � � �� � � � are in the same congruence class

� in this example, several interferences inside the congruence class

GREPS 2007 – September 16th 22

GCC for Embedded VLIW Machine-Level SSA Form

Insights of Sreedhar et al. [SAS 1999]

� a � -congruence class is the closure of the � -connected relation

� liveness under SSA form: � arguments are live-out of
predecessor blocks and � targets are live-in of � block

� SSA form is conventional if no two members of a � -congruence
class interfere under this liveness

� correct SSA destruction is the removal of � -functions from a
conventional SSA form

� after SSA construction (without COPY propagation), the SSA
form is conventional

� Methods 1 – 3 restore a conventional SSA form

� the new SSA-based coalescing is able to coalesce interfering
variables, as long as the SSA form remains conventional

GREPS 2007 – September 16th 23

GCC for Embedded VLIW Predicated Code Support

Predicated Code Support
Fully Predicated Code in a Code Generator

� fully predicated code results from intrinsic function expansion
and from explicit if-conversion

� it is necessary to contain the live-range of variables with
conditional definitions
– flow analysis to insert ’pseudo-KILL’ operations or set a ’kill

property’ on conditional definitions
– as shown by Gillies et al. [MICRO 1996], this is critical for a

graph-coloring register allocation to converge

� SSA form not applicable to variables with conditional definitions

GREPS 2007 – September 16th 24

GCC for Embedded VLIW Predicated Code Support

If-Conversion Outside SSA Form

� Park & Schlansker “On Predicated Execution” [HPL-91-58 1991]
– ’R-K algorithm’ generalizes the Cydrome if-conversion
– operates on the control dependence graph

� Fang “Compiler Algorithms on If-Conversion, Speculative
Predicates Assignment and Predicated Code Optimizations”
[LCPC 1996]
– simple and effective if-conversion using (post) dominance
– operates on acyclic SEME code regions

� Chuang et al. “Phi-Predication for Light-Weight If-Conversion”
[CGO 2003]
– generates SELECT operations (not SSA form if-conversion)

GREPS 2007 – September 16th 25

GCC for Embedded VLIW Predicated Code Support

If-Conversion Under SSA Form (STMicroelectronics)

� Stoutchinin & Gao “If-Conversion in SSA Form” [Euro-Par 2004]
– prove it is correct to replace � -functions by � -functions in

conventional SSA form
– apply to Fang [LCPC 1996] for if-conversion under SSA form
– implement in Open64 for IA64

� Bruel “If-Conversion SSA Framework for Partially Predicated
VLIW Architectures” [ODES-4 2006]
– rework Muliflow-like if-conversion algorithm for SSA form
– locally generate � -functions for predicated LOAD & STORE
– production use in ST200 compilers (ST220, ST231, ST240)

GREPS 2007 – September 16th 26

GCC for Embedded VLIW Predicated Code Support

� -SSA Form for Predicated Code

Stoutchinin & Ferriere “Efficient Static Single Assignment Form for
Predication” [MICRO 2001] motivated by the ST120 LAO

� � �� �
� � � � � 	 �
 � � � � � 	

��
 �
� � � � � 	 �
 � � � � � 	

� � � � � � � � � � � � � � � �

� � arguments are ordered from left to right in dominance order

� conditional definitions are seen as unconditional definitions and
condition argument are treated like other arguments

� classic SSA form optimizations just work on � -SSA form

� � -SSA form does not require a predicate query system

GREPS 2007 – September 16th 27

GCC for Embedded VLIW Predicated Code Support

� -SSA Form Construction and Optimizations

� � insertion is a simple extension of the classic SSA construction
variable renaming process

� � -inlining recursively replaces a � argument defined by another

� operation by the arguments of this second � operation

� � �� �
� � � � � 	 � � � �

� �

 � � � � � 	
 � � � �

� � � � � �
 � � � � � � �
 �

� � �� �
� � � � � 	 � � � �

� � � � � � � � � � � � � �
 � � �

� � -reduction removes the � arguments overridden on their right

� � -projection clones and specialize � for different uses predicates

GREPS 2007 – September 16th 28

GCC for Embedded VLIW Predicated Code Support

� -SSA Form for Partial Predication

Ferriere “Improvements to the Psi-SSA Representation” [SCOPES
2007] implemented in the STMicroelectronics ST200 compiler

� � �� �
� � �� � � � � � � � �� � � � � � � � �� � � � � �

� �
 � 	 � � �

 � �� � � ��� �
 � �� � � ��� �
 � �� � � ��� �

� 	 � �

� � � � � �
 � � � � � � � � � � � � �� 	 � � � 	
 �

� ��� �	
� � �	 �

� � �� � �
� � �

� � � � �
� �� �
 � � �
 � �� � �� � � ��
 � �� � � �
�

� general methods to manipulate SELECT and CMOV operations

� extends the � -functions with predicates on arguments

GREPS 2007 – September 16th 29

GCC for Embedded VLIW Predicated Code Support

The � -SSA Form Destruction [Ferriere SCOPES’06]

Generalize the Sreedhar et al. [SAS’99] algorithm:

� a � -congruence class is the transitive closure of the � -connected
and � -connected relations

� algorithm builds a “ � conventional SSA form”:

� -normalize ensure that all � functions are well-behaved w.r.t.

� argument ordering and predicate association

� -congruence grow the � -congruence classes from the �

functions, introducing repair code to prevent interferences

� -congruence extend the � -congruence classes with �

operations, like in the Sreedhar et al. [SAS’99] algorithm

� eliminate the � and � functions

GREPS 2007 – September 16th 30

GCC for Embedded VLIW Near-Optimal Software Pipelining

Near-Optimal Software Pipelining
Integer Linear Programming Instruction Scheduling

� Wilken “Optimal Instruction Scheduling Using Integer
Programming” [PLDI 2000]
– basic block scheduling on superscalar processors
– use time-indexed variables, range reductions, integer cuts
– schedules up to 1000 instructions with CPLEX

� Kästner & Winkel “ILP-based Instruction Scheduling for IA-64”
[LCTES 2001]
– basic block scheduling with bundling constraints
– use time-indexed variables and the dependence equations of

Chaudhuri et al. [IEEEtoVLSI 1994]

GREPS 2007 – September 16th 31

GCC for Embedded VLIW Near-Optimal Software Pipelining
� Streeter “An Integer Programming Approach to Instruction

Scheduling” [15-745 Project 2006]
– superblock scheduling with cluster assignment and

cross-path management of the TI C6x processors
– use time-indexed variables and classic dependence equation
– improve heuristic solution with variable neighborhood search

� Dinechin “Time-Indexed Formulations and a Large
Neighborhood Search for the Resource-Constrained Modulo
Scheduling Problem” [MISTA 2007]
– superblock scheduling and software pipelining for the ST200
– new time-indexed formulation that differs from Eichenberger

& Davidson [PLDI’97] modulo scheduling formulation
– improve heuristic solution with variable neighborhood search

GREPS 2007 – September 16th 32

GCC for Embedded VLIW Near-Optimal Software Pipelining

Time-Indexed Project Scheduling Formulation [Pritsker et al. 1969]

� a set of operations � � � � � � � � 	 with schedule dates ��� � � � � � � 	

� � denotes the time horizon and � �	� � ��
 � � �
� � � � 	 are ��� ��� � variables
such that �� � def� � if� � � � , else �� � def� �

� in particular we have� � �
 � �� � � � �� � and
 � �� �
 �� � � �

� classic dependence equation for � ��� � � of latency � � � :

� � � � � ��� � � �

 � �

� � �
� �� � � � � ��

 � �
� � �

� �� �

� Christofides et al. [1987] use the following equations instead:

 � �
� � �

� ���

 � �

� � � �� �
� �� � � !� � ��" � #

indeed, �� � � � implies some � �� � � with $ � ! � � � � � � ��" � #
GREPS 2007 – September 16th 33

GCC for Embedded VLIW Near-Optimal Software Pipelining
� assume � resources with availabilities � ��� � ��� � � !� � � #

� operation � � requires� �� units of resource � for all dates in

!� � �� � � � �" � #

 � �

� � �
� �� 	 � �	� minimize (1)

 � �
� �

�� � � �
 � !� � � � � # (2)

 � �
� � �

� �� �
� �� � � �

� �

� �� � � � � !� � ��" � # � �
 � �
 � �
� � (3)

	
� � �

�
� � � � � � �

� ��
�� � � �

� � � !� � ��" � # (4)

�� � � ��� �� �
 � !� � � � � # � � � !� � ��" � # (5)

GREPS 2007 – September 16th 34

GCC for Embedded VLIW Near-Optimal Software Pipelining

Modulo Scheduling Principles

� modulo scheduling is cyclic scheduling where schedules

�� �� � � � ��� � � � 	 must be� -periodic of integral period � :

�
 � !� � � # ��� � � � � � �� � �
 � � � �

� uniform dependences between the generic operation schedule
dates �� � � �
 � � � � � � 	 :

� ��
� ��
	 � � � � � � � �� � � � � � � �� 	 � � � � � � � � � �" �� �� � � �

� modulo resource constraints: each generic operation � � requires�� � �
� � resources for all the time intervals

!� � � � � �� � � � � � � �" � # �� �

� The primary objective of modulo scheduling is to decrease the
cyclic scheduling period � , called the initiation interval

GREPS 2007 – September 16th 35

GCC for Embedded VLIW Near-Optimal Software Pipelining

Time-Indexed Modulo Scheduling Formulation [Dinechin STJSR 2004]

 � �
� � �

� �� 	 � �	� minimize (6)

 � �

� �

�� � � �
 � !� � � � � # (7)

 � �
� � �

� �� �
� � � � � �	 � � �

� �

� �� � � � � !� � � " � # � �
 � �
 � �
� �(8)

	
� � �

��
� � �

� �

� �

� � � �

� � � � � � � � � �
� ��

�� � � �
� � � !� � �" � # (9)

�� � � ��� ��� �
 � !� � � � � # � � � !� � ��" � #(10)

GREPS 2007 – September 16th 36

GCC for Embedded VLIW Near-Optimal Software Pipelining

Solving the Time-Indexed Formulations

� time-indexed scheduling formulations become quickly
intractable in practice: beyond a few thousand variables and
constraints, few instances can be solved in reasonable time

� the dependence equations of Christofides et al. [1987]
(Chaudhuri et al. [IEEEtoVLSI 1994]) are easier to solve

� to reduce the number of variables and constraints, need to
reduce the earliest ��� � � � � � � 	 � � and latest � � � � � � � � 	 � � assumed
schedule dates (margins)

� with our modulo scheduling formulation, the number of
variables is 	 � �� � � � �" � � � �

� with our modulo scheduling formulation, the dependence
equations (8) are redundant whenever� �" � � � � �� �� � � �

GREPS 2007 – September 16th 37

GCC for Embedded VLIW Near-Optimal Software Pipelining

Large Neighborhood Search for Time-Indexed Formulations

� explore a large number of solutions in the neighborhood of an
incumbent solution using implicit enumeration of a MIP solver

� the neighborhood of an incumbent solution ��� �� � � � � � 	 is
obtained by choosing margins !� � � � � # � � �� that are made
dependence-consistent with a forward and a backward
label-correcting algorithm

� at each LNS step, variables �� �� � �� !� � � � � # are fixed to zero and
the redundant dependence equations are removed from the MIP

� our LNS for modulo scheduling alternates between two phases:
– try to reduce the makespan � for a given period �

– try to find a feasible solution at period �" � , given an
incumbent solution at period �

GREPS 2007 – September 16th 38

GCC for Embedded VLIW Near-Optimal Software Pipelining
� implemented both our time-indexed modulo scheduling

formulation and Eichenberger & Davidson [PLDI’97]
formulation in the ST200 VLIW production compiler (LAO v2)

� with LNS and CPLEX, our new modulo scheduling formulation
could be solved for the largest instances and with � � � � � 	

Heuristic LNS GLPK 30s LNS CPLEX 30s
Loop #O,#D � ��� � �� #V,#C � ��� #V,#C
q plsf 5.0 215 231,313 81,97 78,79 698,677 75,78 1873,2042
q plsf 5.0 227 121,163 42,92 41,82 413,440 39,46 1378,1685
q plsf 5.0 201 124,168 42,92 42,84 689,790 40,65 1197,1421
q plsf 5.2 11 233,317 82,100 78,79 1178,1129 75,79 1897,2045
subbands.0 196 130,234 44,65 41,47 598,666 35,48 1008,1248
transfo.IMDCT L 232,370 71,109 58,58 1127,881 58,58 1985,1961

– #O and #D are the number of operations and dependences
– � and � are the period (initiation interval) and the makespan
– #V and #C are the number of variables and constraints

GREPS 2007 – September 16th 39

GCC for Embedded VLIW Summary and Conclusions

Summary and Conclusions
Embedded VLIW Code Generation Successes

� programmer-supplied information for performance & code size
– memory disambiguation with restrict and #pragma

ivdep, inspired from Fortran high-performance features
– intrinsic functions and builtin assume()

� SSA form on machine code with operand constraints
– better instruction scheduling and simpler register allocation

� � -SSA form for predicated code and if-conversion
– � -SSA form with operand constraints under development

� time-indexed formulations for instruction scheduling extensions
– clusterization, spill code control, memory access grouping
– from our experience and Streeter’s, GLPK is quite capable

GREPS 2007 – September 16th 40

GCC for Embedded VLIW Summary and Conclusions

GCC Improvements for Embedded VLIW Processors

� manual memory disambiguation will not go away
– restrict should work better
– #pragma ivdep is a necessary evil

� other programmer assumptions should be standardized
– builtin assume(boolean expression)

� simple predication support at GIMPLE level?
– SELECT operator does not require � -SSA

� other issues not discussed in this presentation
– LOAD control speculation without architectural support
– register tuples in SSA form and register allocation
– data placement, memory hierarchy optimizations

GREPS 2007 – September 16th 41

GCC for Embedded VLIW Summary and Conclusions

Alternative to GCC Code Generator Re-Engineering

� compile for the Common Language Infrastructure (CLI)
program representation
– STMicroelectronics st/cli GCC branch for C to CLI
– LLVM 2.0 MSIL back-end (transforms LLVM IR into CIL)

� complete compilation with a CLI to native code generator
– Mono is able to execute CLI produced by GCC st/cli

– STMicroelectronics has prototyped a CLI to ST200 and ARM
JIT code generator, based on the LAO v2 technology

� how to carry programmer-supplied information through the CLI
program representation?

STMicroelectronics is looking for collaborations on CLI compilation

GREPS 2007 – September 16th 42

