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Abstract
We describe how gcov (based on version gcc 3.4.4) was used in an
embedded system (PowerPC architecture). Unlike the gcov kernel
analysis of the linux test project, our modifications do not use any
file system access during data collection time. It is also shown how
a one-line modification may lead towards a conservative estimation
of coverage in a multithreaded setting.

1. Coverage analysis and gcov
Coverage analysis tests which lines of code have been run through
and can be used for verification of code paths [4, 16]. Coverage
is part of industry norms for software development, e.g. for the
field of avionics see [14, p. 33-34]. Gcov is the coverage analysis
infrastructure provided with the gcc compiler [2, 12], it has been
developed since 1990, it also can be used to analyze assembly files
[5], and there are even well-maintained derivations to analyze a
running linux kernel [8, 9, 13].

One can say that gcov has been quite stable for the last three
years (since gcc version 3.4 where the gcov IO framework had
been “completely remangled” [15]). However, some of the more
extensive descriptions such as [5, 9] refer to earlier versions of
gcov; so it seems justified to start with some general introduction:

1.1 Terminology
1.1.1 Arcs and blocks
It is common usage [1, p. 528] that a basic block (bb) consists of
one or more statements that are called atomically (that is there is
no branching between them) during all runs of a program. An arc
(alternatively: edge; branch) is a pair of basic blocks (source bb,
destination bb) that records which bb jumps to which other bbs.

1.1.2 Scope of gcov coverage
The coverage of gcov is based on arcs (branch coverage), from
this also the coverage of blocks (line or statement coverage) can be
inferred. The expression (i==0 || (j == 1 && p->j == 10))
is given in [9] to illustrate a limitation of gcov coverage: gcov cov-
erage will show how often the entire expression gets evaluated to
true or false but it will not show the outcome of each subexpression
that led to that expression. (Gcov’s coverage is also classified as
“condition coverage” in [4]; the more coarse classification of [16]
also excludes gcov from “decision coverage”.)

1.2 Gcc source code and versions
In this document we refer to the gcov infrastructure of gcc as of
version 3.4.4; apparently since then up to the current gcc 4.3.0
prerelease (checked out on 30 June 2007) the gcov framework has
been very stable. In case of ambiguity, file and function names refer
to files in gcc-3.4.4/gcc.

1.3 The three steps of the gcov user interface
We briefly define three steps in the gcov framework (for a more
gentle introduction see [6]):

• compilation phase (“gcc -O0 -o hello -fprofile-arcs
-ftest-coverage hello.c”)

• data collection and extraction phase (“./hello” is the collect-
ing binary)

• reporting phase (“gcov -a hello.c”)

1.4 Code coverage during the three phases
If one wants to modify the framework, it is important first to
understand which files one has to tweak for controlling which
phase, that is to understand the “coverage” of gcov itself (in an
informal sense). To begin with, the gcov framework resides in the
files coverage.c, gcov.c, gcov-io.c, libgcov.c, profile.c
(and header files). Instrumenting all functions shows the following
division of labor:

1.4.1 Compilation phase
During the compilation phase functions in toplev.c call func-
tions in coverage.c and profile.c, these call functions in
gcov-io.c (IN_LIBGCOV is not set). In particular, the collect-
ing binary’s data structure holding counter memory that is made
available by gcov_init is generated by build_gcov_info of
coverage.c which also for each compilation unit write-opens a
gcno (“gcov notes”) file which will be consulted during the re-
porting phase. The gcno file is to record the structure of the flow
graph containing the arcs and blocks during a compilation (more
details on the format in section 1.5.1, this is done in profile.c).
Correspondingly, a few lines later down the code the meticulous
profile.c also for each of the arcs defined in the gcno file calls
insert_insn_on_edge which inserts counter adding instructions.
One also can see by the inspection of object files that both on ppc
and i386 simply for each instrumented arc a counter of two consec-
utive 32-bit integers is included within the assembly file, e.g. addl,
adcl on i386 (plus storage overhead; for ppc detail see section 4.1).

1.4.2 Data collection phase
The instrumented assembly files call libgcov.c functions that
again use gcov-io.c functions (now IN_LIBGCOV is set, but
GCOV_LOCKED is not set). The counters that are incremented reside
in libgcov’s struct gcov_info’s count fields and already have
a place in memory before the executable is running. Once the exe-
cutable is running, the counters are just incremented (264 ≈ 4·1018

which at 1 GHz gives 4 · 109 seconds, i.e. more than 125 years be-
fore overflow).

When the program exits (atexit on i386), gcov_exit is called
which writes the collected data into a gcda (“gcov data” file).



1.4.3 Reporting phase
During the reporting phase (gcov.c and gcov-io.c, in
IN_LIBGCOV is not set, IN_GCOV is set), the gcda and gcno files
are read out, the basic block data is calculated from arc data and
written into a human-readable report (hello.c.gcov). To gener-
ate more beautiful reports (in color), lcov [8] can be used as gcov
back-end.

1.5 GCNO and GCDA file formats
Both files are formally described in [15]. To summarize, for each
source file gcda and gcno files are created (for readers familiar with
the pre-gcc-3.4 gcov utilities: *.gcno holds the data of *.bb and
*.bbg; *.gcda holds the data of *.da). Both consist of a short (12
byte) header (magic, version, crc) followed by a list of information
for each function usually in the same order that the functions are in
the source file. In a full gcc build a binary named gcov-dump for
inspection is created but also the binary hexdumps of the files are
quite readable, because header tags have been recorded in different
endianness than data proper.

1.5.1 Data for each function in the gcno file
(The order of the three list items below has been reversed in order
to reflect the priority for the record entries for our purpose.)

• records tagged 0x01450000 (with ’E’ in ASCII showing up for
’45’): each contains the identity of one bb, and the list of source
lines it attached to it. In gcc-3.4 files the record ends with two
’0’s. When only -fprofile-arcs but not -ftest-coverage
is given, these headers are omitted.

• records tagged 0x01430000 (featuring ’C’ in ASCII): here a list
of arcs is kept, format for an arclist: source bb, followed by a
list of one or multiple times the pair (destination bb, flag). The
flag is 1 for GCOV_ARC_ON_TREE, 2 for GCOV_ARC_FAKE, 4 for
GCOV_ARC_FALLTHROUGH.

• records tagged 0x01410000 (featuring ’A’ in ASCII): on in-
spection of practical examples these are n flags typically ini-
tialized to 0 for n records (also from code inspection there is
some indication that this part of the files is currently not always
used e.g. as of gcc-3.4.4 up to gcc-4.3.0 on reading only the
record summary giving its count n is given out by gcov-dump
and on writing the argument to gcov_write_unsigned (in
profile.c:843) is simply constant 0).

1.5.2 Data for each function in the gcda file
• records tagged 0x01000000 for each function which after an

identity (referrring to the gcno file identity) is followed by
an 0x01a10000 (GCOV_TAG_FOR_COUNTER) record containing
the 64-bit counts of some arcs (those not having an odd flag
which which indicates that there are not GCOV_ARC_ON_TREE,
i.e. on the spanning tree). In addition to the nodes listed in the
gcno file, there also exist implicit nodes referred to tagged with
GCOV_ARC_FALLTHROUGH with index 0 (beginning of function)
and index n + 1 (end of function).

The gcda file ends (0xa1000000) with some summary statistics on
the object, and, if it is a program, on the program.

2. Compilation for a PPC target without file
system and without C standard library

2.1 Entry point: iteration over __CTOR_LIST__
Before we can start the coverage (before main is entered), it has to
be ensured that memory for counters gets allocated.

2.1.1 Comparison with C++ constructor calls
That task sounds familiar: C++ memory management also has
to initialize constructors before calling main, and for ELF files
the ELF standard [11] charges section .init to allow calls to
functions allocating memory before running main. Generally, on
i386 ELF files compiled by gcc, objdump shows that the func-
tion _init in the section .init calls __do_global_ctors_aux
(crtstuff.c) which iterates over a list of function pointers (re-
ferred to as __CTOR_LIST__ by the default linker script).

2.1.2 Gcov I386 constructors
When, on i386 -ftest-coverage is used, each compila-
tion unit emits a pointer to a corresponding gcov initial-
ization function named after its first global symbol (e.g.
_GLOBAL__I_somesymbol_GCOV for a compilation unit that con-
tains somesymbol) which calls __gcov_init with the argument
struct gcov_info *p is added to the constructor list.

2.1.3 Manual generation of constructor infrastructure
On the embedded target, when we compile with gcc with gcov
but where we do not have glibc infrastructure, we still generate
the _GLOBAL__I_somesymbol_GCOV hook, but we do not want
to install the whole crtstuff infrastructure on the target, so by
adaptation of the linker script we carry the contents of .ctors over
to .text and call gcov_entry during the boot phase:

void gcov_entry() {
ctor const *ptr = __CTOR_LIST__;
ctor const *end = __CTOR_END__;

while(ptr != end) {
if(*ptr)

(*ptr)();
ptr++;

}

The contents of struct gcov_info are addressed via a hardcoded
memory pointer.

2.2 Replacing C standard library parts of glibc
2.2.1 Storage-related calls
On i386, gcov would like to write data to files and use dy-
namic memory allocation (most of this is in gcov_exit).
In particular, gcov_exit calls the three file operation func-
tions gcov_open, gcov_close, gcov_write_block. (It also
calls the intermediate-level functions gcov_write_tag_length,
gcov_write_counter, gcov_write_summary, gcov_write-
_unsigned, gcov_write_words, but all these intermediate-level
functions end up calling gcov_write_block.) In particular, stan-
dard library function that need to be replaced are fseek, fopen,
fclose, fwrite, malloc, realloc.

2.2.2 Exit point
Exit point: On i386, during data extraction, GCDA files are written
from the instrumented files via a call to atexit (part of glibc) via
__gcov_exit. On the embedded system we will halt the system
manually and make a call to gcov_exit to write the data into
memory (e.g. in the a Lauterbach hardware JTAG debugger call
set the instruction pointer to the exit routine via register.set
ip gcov_exit; go).

2.2.3 A datastructure for holding file system data
In gcdamem.h, for each gcda file define (when gcov_exit is
called the number of files is known, thus giving a single-directory
memory-based “file system” where filenames may contain forward
slashes):



struct gcda_record {
/** Name of file. */
char gr_name[FILENAMELEN];
/** Number of 32bit words in file. */
uint32_t gr_size;

} __attribute__ ((packed));

Hence the equivalent of opening a gcda file on i386 is incrementing
a counter pointing an instance of gcda_record.

2.2.4 Replacing dynamic memory allocation
We have replaced dynamic memory allocation by static allocation.

#define GCOV_MEMBASE 0xD0A00000
writePosition = (uint8_t*)GCOV_MEMBASE;

Then increments of writePosition replace memory allocation
calls from gcov-io.c functions (this can be done so simply, be-
cause realloc calls always in gcov-io.c refer to the most re-
cently assigned memory).

2.3 Compilation flags
Compile with -DIN_LIBGOV.

3. Running on the target, post-mortem memory
analysis on the I386 host

3.1 Memory boundaries
In a first attempt, the beginning and end of the the dump was
indicated by messages from libgcov such as

libgcov: size of mem 27752 (0x6c68)
libgcov: memory begins at 0xc082b1c8
libgcov: memory ends at 0xc0831e30

from these the desired memory segments can be read off the serial
interface (e.g. via kermit). However, this way of debugging had
influenced the counts (calls to printf infrastructure) and negative
solutions to flow graphs were to be avoided. Hence from the next
iteration on, printfs have been omitted, instead the memory of
interest is well-known and the end is given by the file header.

3.2 Reading in the memory dump
We assume that a memory dump has been generated.

3.2.1 Generation of gcda files
PPC endianness is big-endian (our target’s memory dump) whereas
i386 (our host) is little-endian. However, this is a conversion we get
for free... the gcov analysis tool automatically is aware whether a
file starts with “gcda” or “adcg” and even does not require gcda
and gcno files to be of the same endianness.

3.2.2 Gcda + gcno + C sources → coverage (how to report it)
Recall from section 1.4.1 that the *.gcno files already had been
generated during compilation of the sources (parallel to the in-
strumentation). During the reporting phase, the standard gcov tool
(gcov-3.4 on our host), uses our gcda generated by the previ-
ous step and the gcno files to make coverage reports. For anno-
tating the sources, it is needed that the source is also located in
the directory. Adding up results of several runs (taken care of by
gcov_merge_add if we were in a file-system setting) can be done
on the host by parsing the text file output of the gcov tool and
adding up the results. Similarly, for convenience during develop-
ment, simple scripts have been written to check a memory dump
for negative counts (which would result from solve_flow_graph
when it has been fed garbage).

3.2.3 Testing of the tools
To test the above-mentioned modifications to libgcov and the sub-
sequent extraction, we have run tests on C flow control and func-
tion call statements, recursion to a depth allowed by the embed-
ded target and target scheduler tests. Comparison of gcov output
(w.r.t. function coverage, statement coverage, preprocessor behav-
ior) showed correct results for the modified gcov variant as far
semantically relevant code is concerned (for all practical applica-
tions).

As side result, these tests also revealed that the standard gcc ver-
sion 3.4.4 (hence including e.g. the i386 platform) shows false cov-
erage for some semantically empty code when in a switch com-
pound statement the default case only contains a break statement.
Closer investigation of the switch behavior in the gcc code showed
that a patch would have to fix code in the jump optimization pass
4 in gcc-3.4.4 (as apparently one also would have to block opti-
mization at other places, forcing this into the gcc 3 branch seems
not advisable). The behavior does not occur when gcc 4 is used
where with passes.c replacing part of toplev.c the optimiza-
tion pipeline has been cleaned up.

4. One-line modification of gcc to cover reentrant
code

4.1 Problem: possible race condition in a multithreaded run
If one looks at generated code (compilation on ppc architecture via
gcc-3.4 -O0 -ftest-coverage -fprofile-args hello.c)

lis r9,-16252
addi r11,r9,21112
lwz r9,0(r11)
lwz r10,4(r11)
addic r10,r10,1
addze r9,r9
stw r9,0(r11)
stw r10,4(r11)

it looks that there may be race conditions in case of code reentrance,
e.g. that one looses a count when one thread reads in the counter
register r10 via lwz and then the other reads in the register r10 via
lwz too (leading to a loss of 1 in the count on stw r10 write).

In such a situation it may happen that solve_flow_graph
reconstructing block counts (where subtractions occur) from arc
counts may give out coverage>0 for blocks where coverage actually
has been 0 (this is the critical case [3], also [7] explicitly does
not claim thread-safety). E.g. empirically, in a threaded context,
negative values for positive coverage had been obtained during
pthread/i386 experimentation.

4.2 Evaluation by visual inspection
In a not too complicated system, sometimes only a few functions
are reentrant, so it is sometimes feasible to do an automated anal-
ysis of non-reentrant functions combined with a manual stepping
through reentrant functions.

4.3 Modification of instrumentation
In our case we were only interested in showing that there is no dead
code, that is each statement has been covered at least once. In this
situation a conservative estimate (lower bounds) for block coverage
is feasible, this can be achieved by a simple (one-line) change to
the gcc sources (recall that, up to now, all of the analyses had been
done with a customized libgcov but with a standard gcc compile-
time framework): for gcc-3.4.4 it was sufficient to disable the call to
find_spanning_tree in profile.c:branch_prob, for gcc-4.3
from withing find_spanning_tree return after having finished



Figure 1. Gcno file structure changes by disabling spanning tree
optimization (kdiff3 bird’s eye view)

the block inserting all critical edges (before “And now the rest.”
comment). This leads to an increase of the binary size of ca. 10%,
a size increase of typically 10 − 50% in gcda files, and actually a
small decrease in gcno size file, because a fake edge exit to entry
is no longer added (Figure 1 shows the comparison of gcno files
of a compilation unit with several functions with and without use
of spanning trees). During preliminary tests, a running binary was
produced, and also testing results generated by the standard gcov
inspection tool (counts of function where the behavior was well-
known) were consistent with the non-modified instrumentation, so
one can confirm that gcov.c:solve_flow_graph also works fine
on an empty spanning tree.

Note that because the gcov analysis is strictly per compilation
unit for a system it is also possible to simply compile the reentrant
functions with spanning trees disabled, and to compile other func-
tions with the standard (unmodified) gcc, and then link and analyze
the result together.

To simply remove an optimization of course is a bit “back-
wards”, but it is useful to know that even after its rich evolution the
gcov framework can be cut down quickly when needed. An alter-
native to our reductionist approach might be to assign each thread
its own memory for coverage or do only tree optimizations that will
not require subtraction of counts.

5. Discussion and outlook
5.1 Development pathway taken
As a first step we had instrumented gcc 3.4.4’s *gcov* sources to
get a clear understanding of the different phases of the gcov frame-
work. In a next step, still on the i386, we removed file system de-
pendence and then general libc dependence. Then, the framework
was ported to ppc. Finally, first steps towards thread-safety were
explored.

5.2 Results
We have shown how to do the necessary modifications to libgcov
to work on an embedded target without file system and without
memory management. To the best of our knowledge, this is the first
description of a modification of gcov to for memory-only systems.
Also little has been so far published on handling threading in a gcov
environment via cutting off everything that can be discarded.

5.3 Limitations
Some hard-coded assumptions such as FILENAMELEN need to be
respected. So far, on the target, we have not imported check-
sums (because with the memory-based approach accidental in-
between recompilation the checksums were intended to prevent is
not likely). One could do an implementation of fseek (if one wants
the write_program_summary feature).

6. Hardware and OS details
Freescale MPC5554 processor, e200z6 CPU, PikeOS 2.2 develop-
ment toolchain. The custom-built operating system has thread ab-
straction to provide pseudoparallel execution of program units on a
single physical CPU.

We have used a Lauterbach LA-7753-DEBUG-MPC5500 de-
bugger controlled from in-circuit trace32 [10] to transfer mem-
ory from the embedded node to the host (depending on the mem-
ory mapping applied one has to take care that the CPU L1-cache is
properly flushed before reading out).

Thanks to Ben Fischer, Ingo Hornberger, Daniel Junglas, Christian
Körner, Bertrand Marquis for suggestions, advice and test design.
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